模电基本知识点总结?
1、模拟电路基础:模拟电路中的电子器件,电路基本元件,电路原理,电路分析,电路设计,线性回路计算,稳态响应计算,瞬态响应计算,电路仿真计算等。
2、数字电路基础:数字电路中的电子器件,逻辑门,组合逻辑电路,时序逻辑电路,多位等数字电路的原理,组合逻辑电路的分析与设计,数字电路的仿真计算等。
3、混合电路基础:混合电路中的模数转换器,混合电路的原理,混合电路的应用,混合电路的测试与调节,混合电路的分析与设计,混合电路的仿真计算等。
4、电路基础:电路的构成,电路的电压、电流、电阻、电感、电容及其关系,电路的分析方法,电路的变换原理,电路的定律与公式,电路的传输函数,电路的仿真计算等。
公基哲学基本知识点总结?
以下是公共基础哲学的一些基本知识点的总结:
1. 哲学的定义:哲学是对世界、人类和知识的根本问题进行深入思考和探讨的学科。它通过哲学思维和方法,探索宇宙的本原、人的存在意义以及知识的来源与限度。
2. 存在与实在:哲学关注存在的本质和实在的本体问题。存在是指事物的存在状态,实在则是指事物的实际独立存在。
3. 形而上学:形而上学是哲学的一支主要分支,研究存在和实在的本质、事物的本质属性、原因和目的。
4. 范畴与概念:范畴是哲学思考的基本框架,用于理解和分类事物的逻辑规律。概念是范畴的基本构成单位,包括一般、特殊和个别三种类型。
5. 知识与认识:哲学探讨知识的本质和认识的过程,包括经验主义和理性主义两个主要派别。经验主义认为知识源于感觉和经验,理性主义认为知识源于理性思考。
6. 真理与价值:哲学思考真理的本质和判断的准确性。价值是人类行为的指导原则和道德规范。
7. 学科关系:哲学与其他学科有着协同关系,如科学哲学研究科学的基本原理和方法,伦理学研究道德行为和价值观念。
8. 哲学思维:哲学思维包括分析、综合、抽象、辩证等多种方法和逻辑工具,旨在深入思考问题,并探索事物的本质和真理。
这些基本知识点是公共基础哲学的核心内容,通过学习和理解这些知识点可以帮助我们更好地认识世界、思考问题,并形成自己的价值观和对生活的理解。
中考物理急救知识点?
中考物理的急救知识点包括以下几点:1. 火灾逃生和灭火。要求注意火源,不慌乱,寻找最近的安全出口。遇到小火可以使用灭火器进行灭火。2. 电击、触电等。一旦发生触电,应立即切断电源或使用绝缘器具,非专业人士不要私自救援。3. 化学品泼溅等。应尽快将受伤人员送往通风处,用大量清水冲洗受伤部位或全身,避免化学品进一步伤害。因此,在中考物理考试时,考生需要熟知这些急救知识点,以确保自身和他人的安全。
氨的知识点总结?
氨气,无机化合物,常温下为气体,无色有刺激性恶臭的气味,易溶于水,氨溶于水时,氨分子跟水分子通过氢键结合成一水合氨(NH3?H2O),一水合氨能小部分电离成铵离子和氢氧根离子,所以氨水显弱碱性,能使酚酞溶液变红色。氨与酸作用得可到铵盐,氨气主要用作致冷剂及制取铵盐和氮肥。
非洲的知识点总结?
非洲大陆总体为海拔高,但处于热带,又比较热
log的知识点总结?
log即为对数。
(1)对数的定义:
如果ax=N(a>0且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,其中a叫做对数的底数,N叫做真数.当a=10时叫常用对数.记作x=lg_N,当a=e时叫自然对数,记作x=ln_N.
(2)对数的常用关系式(a,b,c,d均大于0且不等于1):
①loga1=0.
②logaa=1.
③对数恒等式:alogaN=N.
二、解题方法
1.在运用性质logaMn=nlogaM时,要特别注意条件,在无M>0的条件下应为logaMn=nloga|M|(n∈N,且n为偶数).
2.对数值取正、负值的规律:
当a>1且b>1,或00;
3.对数函数的.定义域及单调性:
在对数式中,真数必须大于0,所以对数函数y=logax的定义域应为{x|x>0}.对数函数的单调性和a的值有关,因而,在研究对数函数的单调性时,要按01进行分类讨论.
4.对数式的化简与求值的常用思路
(1)先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.
(2)先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.
力学知识点总结?
【重力】
1.地面附近的物体,由于地球的吸引而受的力叫重力。重力的施力物体是:地球。
2.重力大小G=mg其中g=9.8N/kg它表示质量为1kg的物体所受的重力为9.8N。未说明时g=10N/kg
3.重力的方向:竖直向下。
4.重力的作用点──重心。
【弹力】
1.物体受力发生形变,失去力又恢复到原来的形状的性质叫弹性。
2.塑性:在受力时发生形变,失去力时不能恢复原来形状的性质叫塑性。
3.弹力:物体由于发生弹性形变而受到的力叫弹力,弹力的大小与弹性形变的大小有关。
4.弹力产生的条件:(1)直接接触;(2)有弹性形变
5.弹簧测力计:
6.弹力的大小:用二力平衡方法求解
【摩擦力】
1.产生条件:(1) 物体接触表面是粗糙的(如接触面光滑时摩擦力为零);
(2) 物体对接触表面有挤压作用;
(3) 物体关于接触面发生相对运动或相对运动趋势.
以上三点式摩擦力产生的必要条件,三者缺一不可.
2.分类
(1) 滑动摩擦力:(2) 静摩擦力:(3) 滚动摩擦:
3.特点
(1) 滑动摩擦力的大小和方向
①大小:与接触面的粗糙程度和压力有关,压力越大,表面越粗糙,摩擦力越大.
②方向:与物体相对于接触面的运动方向相反.
(2)静摩擦力的大小和方向:
①大小:与使物体产生相对运动趋势的外力大小相等.
②方向:与物体相对于接触面的运动趋势方向相反.
point知识点总结?
point可以用作名词
point用作名词时的意思比较多,可作“要点,论点,观点,尖端,尖儿,点; 小数点,标点,(某一)时刻,(某一)地点,分数,得分,条款,细目”“特点,特征,长处”等解,均用作可数名词。作“目的,意图”解时,是不可数名词,多与the 连用。
in point意思是“切题的,恰当的”; in point of意思是“就…而言,在…方面”; make a point of sth 意思是“特别重视某一事项”; not to put too fine a point on it意思是“不客气地说,直截了当地说”。
point用作动词的意思是“削尖”“弄尖”“使尖锐”,引申表示为“指向”“对准”“加强”“强调”等。
point用作名词的用法例句
I have tried to get my point across.我已尽力让我的观点清晰明了。
OK, you've made your point!好了,你已经把话说清楚了。
I don't see the point of her last remark.我不明白她最后那句话的意思。
point可以用作动词
point用作动词的意思是“削尖”“弄尖”“使尖锐”,引申表示为“指向”“对准”“加强”“强调”等。
point既可用作及物动词,也可用作不及物动词。用作及物动词时接名词或代词作宾语; 用作不及物动词时,常与介词to,at,towards等连用,表示“指向某位置或方向”,或者表示“表明”“暗示”等。
point作为名词使用时,通常用短语“point of view”来表达一个“观点”或者“意见”;
point用作动词的用法例句
He pointed at the diagram to illustrate his point.他指着图表来说明他的论点。
The hands of the clock point to five o'clock.时钟的针指向五点钟。
向量知识点总结?
一、向量知识点归纳1.与向量概念有关的问题⑴向量不同于数量,数量是只有大小的量(称标量),而向量既有大小又有方向;数量可以比较大小,而向量不能比较大小,只有它的模才能比较大小.记号“>”错了,而||>||才有意义.⑵有些向量与起点有关,有些向量与起点无关.由于一切向量有其共性(大小和方向),故我们只研究与起点无关的向量(既自由向量).当遇到与起点有关向量时,可平移向量.⑶平行向量(既共线向量)不一定相等,但相等向量一定是平行向量,既向量平行是向量相等的必要条件.⑷单位向量是模为1的向量,其坐标表示为(),其中、满足=1(可用(cos,sin)(0≤≤2π)表示).特别:表示与同向的单位向量。例如:向量所在直线过的内心(是的角平分线所在直线);
例1、O是平面上一个定点,A、B、C不共线,P满足则点P的轨迹一定通过三角形的内心。
(变式)已知非零向量AB→与AC→满足(AB→|AB→|+AC→|AC→|)?BC→=0且AB→|AB→|?AC→|AC→|=12,则△ABC为()A.三边均不相等的三角形B.直角三角形C.等腰非等边三角形D.等边三角形(06陕西)⑸的长度为0,是有方向的,并且方向是任意的,实数0仅仅是一个无方向的实数.⑹有向线段是向量的一种表示方法,并不是说向量就是有向线段.(7)相反向量(长度相等方向相反的向量叫做相反向量。的相反向量是-。)
极限知识点总结?
高等数学极限有两类,一是数列极限,二是函数极限。学习时,我们都是先学数列极限的知识,然后在此基础上,再学函数极限的知识。不过它们其实是统一的。
函数极限又包括两个方面,一是当函数自变量趋于无穷大时的函数极限;二是当函数自变量趋于某一个点时的函数极限。而其中第一方面又分成三种情况,一是自变量越于正无穷大时,二是自变量趋于负无穷大时,三是自变量同时趋于正无穷大和负无穷大,即越于无穷大时。数列极限可以近似看作是函数极限在自变量趋于正无穷大时的特例。
1、关于极限的知识点,首先当然是极限的定义了。数列的极限有ε-N定义:
设{an}为数列,a为定数. 若对任给的正数ε,总存在正整数N,使n>N(或n≥N)时,有|an -a|∞)an=a. 对应的还有数列发散的定义。
函数极限则有趋于无穷的定义:设f为定义在[a,+∞)上的函数,A为定数.若对任给的ε>0,存在正数M(≥a),使得当x>M时,有|f(x)-A|+∞)f(x)=A. 对应的有趋于负无穷和趋于无穷的定义。
另外,函数极限还有趋于x0的定义:设f在某空心邻域U(x0;δ’)内有定义, A为定数.若对任给的ε>0,存在正数δ(0(或x0)f(x)≤lim(x->x0)g(x).
迫敛性:设lim(x->x0)f(x)=lim(x->x0)g(x)=A, 且在某U(x0;δ’)内有:f(x)≤h(x)≤g(x),则lim(x->x0)h(x)=A.
其它类型的极限性质类似,可自己模仿写出来。
数列极限和函数极限还有相同的四则运算法则,即:函数(或数列)和差积商的极限等于极限的和差积商,其中作为除数的函数(或数列)或极限不等于0。
3、接下来是极限存在的条件,即收敛的条件:
(1)单调有界定理:以数列极限为例,在实数系中,有界的单调数列收敛,且其极限是它的上(下)确界. 函数极限的单调有界定理只针对单侧极限。
(2)柯西收敛准则:以函数极限为例,设f在U(x0;δ’)内有定义。lim(x->x0)f(x)存在的充要条件是:任给ε>0,存在正数δ(≤δ’),使得对任何x’, x”∈U(x0;δ)有|f(x’)- f(x”)|x0)f(x)存在的充要条件是:对任何包含于U(x0;δ’)且以x0为极限的数列{xn}, lim(x->∞)f(xn)都存在且相等.
函数极限的单侧极限,即左极限和右极限,都有对应的归结原则。
关于极限存在的条件还有很多,但未必都是充要条件,只能靠平时学习中多加积累。
4、常用的极限。
最重要的是无穷小量,可以理解为等于0的极限。当两个无穷小量的比等于1时,我们就称它们为等阶无穷小量,可以在求极限时,进行等价替换。比如x和sinx是等阶无穷小量,记做x~sinx,或sinx~x.
有一些常用的等阶无穷小量必须牢记,其中最常用的有:x~sinx~tanx和x^2~(cosx)^2/2. 而 x~sinx更是构成了第一个重要极限lim(x->0)sinx/x=1. 要注意它与lim(x->∞)sinx/x的区别,后者是无穷小量与有界量的积,结果等于0.
第二个重要极限是:lim(x->∞)(1+1/x)^x=e,它还有数列极限的形式:lim(n->∞)(1+1/n)^n=e. 它涉及到一类未定式极限1^∞,只要是这种类型的极限,都与e有关。
与无穷小对应的是无穷大量,不过无穷大量的倒数就是无穷小量,所以我们可以把它们统一起来,求无穷大量有关的极限时,都可以先把无穷大量化为无穷小量来解。
5、最后一个问题是极限的应用。极限的应用非常广泛,我们在极限这一章中,主要是用它来求函数图像的渐近线。这方面的详细内容请自行补充。
发表评论